A feedforward bidirectional associative memory
نویسندگان
چکیده
In contrast to conventional feedback bidirectional associative Memory (BAM) network models, a feedforward BAM network is developed based on a one-shot design algorithm of O(p(2)(n+m)) computational complexity, where p is the number of prototype pairs and n, m are the dimensions of the input/output bipolar vectors. The feedforward BAM is an n-p-m three-layer network of McCulloch-Pitts neurons with storage capacity 2(min{m,n}) and guaranteed perfect bidirectional recall. The overall network design procedure is fully scalable in the sense that any number p= or <2(min{m,n}) of bidirectional associations can be implemented. The prototype patterns may be arbitrarily correlated. With respect to inference performance, it is shown that the Hamming attractive radius of each prototype reaches the maximum possible value. Simulation studies and comparisons illustrate and support these theoretical developments.
منابع مشابه
Test Bed for Multilayered Feed forward Neural Network Architectures as Bidirectional Associative Memory
Multilayered feed-forward neural networks are considered universal approximators and hence extensively been used for function approximation. Function approximation is an instance of supervised learning which is one of the most studied topics in machine learning, artificial neural networks, pattern recognition, and statistical curve fitting. Bidirectional associative memory is another class of n...
متن کاملCHAPTER III Neural Networks as Associative Memory
Associative memories can be implemented either by using feedforward or recurrent neural networks. Such associative neural networks are used to associate one set of vectors with another set of vectors, say input and output patterns. The aim of an associative memory is, to produce the associated output pattern whenever one of the input pattern is applied to the neural network. The input pattern m...
متن کاملCovariance Learning of Correlated Patterns in Competitive Networks
Covariance learning is a powerful type of Hebbian learning, allowing both potentiation and depression of synaptic strength. It is used for associative memory in feedforward and recurrent neural network paradigms. This article describes a variant of covariance learning that works particularly well for correlated stimuli in feedforward networks with competitive K-of-N firing. The rule, which is n...
متن کاملDense Associative Memory for Pattern Recognition
A model of associative memory is studied, which stores and reliably retrieves many more patterns than the number of neurons in the network. We propose a simple duality between this dense associative memory and neural networks commonly used in deep learning. On the associative memory side of this duality, a family of models that smoothly interpolates between two limiting cases can be constructed...
متن کاملFEBAMSOM-BAM∗: Neural network model of human categorization of the N-bits parity problem
Classification following a non-linearly separable boundary is a cognitive task that is hard to complete for humans and animals. Feedforward neural networks are able to perform the task efficiently but they present little correspondence with human cognition. We present a neural network model of human categorization of the n-bit parity problem, using a modification of the pi-sigma network incorpo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on neural networks
دوره 11 4 شماره
صفحات -
تاریخ انتشار 2000